Bem vindos ao Pato Science

Nosso pensamento não é só de cumprir as metas para obtenção de conceito na
disciplina, mas de informar, trazer a todos os que nos visitam CONHECIMENTO,
as maravilhas da disciplina de Patologia. Assim agradecemos a visita... Sintam-se em casa.

quinta-feira, 6 de maio de 2010

Seringa implantável libera medicamentos sem dor

Aplicação personalizada de medicamentos

Muitas condições médicas, como câncer, diabetes e dores crônicas, exigem medicamentos que não podem ser tomados oralmente. As doses devem ser intermitentes ou numa base "conforme necessário," sempre durante um longo período de tempo.

Já foram desenvolvidas várias técnicas para aplicações das chamadas drogas inteligentes - um processo chamado drug delivery, ou aplicação personalizada de medicamentos, numa tradução livre. Essas técnicas incluem fontes de calor ou de luz externas, chips eletrônicos implantados e outros estímulos que funcionam como uma chave liga-desliga para a liberação dos medicamentos no corpo.

Contudo, nenhuma dessas técnicas consegue fazer tudo o que se espera de uma forma de aplicação de medicamentos realmente inteligente: abrir e fechar repetidamente a dosagem do medicamento e liberar sempre dosagens precisas, conforme a necessidade do paciente.

Nanotecnologia e magnetismo

Agora, mesclando nanotecnologia e magnetismo, a equipe do Dr. Daniel Kohane, do Hospital Infantil de Boston, nos Estados Unidos, encontrou a solução mais promissora até o momento para o conceito de "entrega de medicamentos."

O medicamento é misturado a nanopartículas magnéticas, feitas de óxido de ferro, e colocadas no interior de uma espécie de cápsula fabricada com uma membrana especial. A cápsula, por sua vez, é inserida no interior de um pequeno dispositivo biocompatível implantável, que mede menos de 1 centímetro de diâmetro. O dispositivo é passivo, sem necessidade de nenhum componente eletrônico.

Um campo magnético aplicado externamente aquece as nanopartículas magnéticas, distendendo a superfície da membrana da cápsula. Essa distensão abre poros temporários na membrana que permitem que o medicamento saia da cápsula e atinja o organismo. Quando o campo magnético é desligado, a membrana se resfria e fecha os poros, interrompendo a liberação do medicamento.

Seringa implantável

A dose liberada pode ser controlada precisamente pela duração da ativação do campo magnético. A quantidade de medicamento liberada manteve-se constante ao longo de múltiplos ciclos de funcionamento.

O dispositivo mostrou-se totalmente biocompatível nos testes em cobaias, sem toxicidade para as células e sem qualquer rejeição pelo sistema imunológico, mantendo-se totalmente funcional por 45 dias no organismo dos animais.

As membranas são ativadas por temperaturas superiores às temperaturas apresentadas pelo organismo, não sendo afetado mesmo por estados de febre alta ou inflamação local.

O próximo passo da pesquisa será obter as autorizações necessárias para os testes em humanos.

Implante cerebral de seda é esperança para epilepsia e lesões da coluna

Implante de seda

Cientistas criaram um novo tipo de eletrodo para implantes cerebrais que praticamente se funde no lugar, adequando-se com perfeição à superfície irregular do cérebro.

Feito de uma mescla precisa de polímero, metal e seda, o implante ultrafino é menos invasivo do que os tradicionais eletrodos de agulha, praticamente não causando danos ao cérebro.

A parte de seda - ou fibroína, a proteína da qual a seda é feita - é projetada para dissolver-se depois que os eletrodos são implantados no cérebro, garantindo um perfeito contato e leituras mais precisas dos impulsos elétricos do cérebro.

Eletrodo cerebral

A tecnologia pode impulsionar o campo das interfaces cérebro-máquina e permitir a criação de dispositivos práticos para monitorar e controlar as convulsões epilépticas e até mesmo para transmitir sinais do cérebro para partes específicas do corpo, saltando partes danificadas por fraturas na coluna vertebral.

"Estes implantes têm o potencial para maximizar o contato entre os eletrodos e o tecido cerebral, minimizando os danos ao cérebro. Eles podem fornecer uma plataforma para uma grande variedade de dispositivos médicos, com aplicações na epilepsia, nas lesões da medula espinhal e outras desordens neurológicas," afirma o Dr. Walter Koroshetz, do Instituto Nacional de Desordens Neurológicas, dos Estados Unidos.

Os experimentos demonstraram que os implantes ultrafinos e flexíveis, recobertos de seda, captam a atividade cerebral mais fielmente do que os implantes mais grossos utilizados atualmente, mesmo quando utilizados em conjunto com o mesmo circuito eletrônico de suporte.

Eletrodos neurais

A primeira geração de eletrodos neurais, usados para gravação dos sinais cerebrais - e ainda a mais largamente utilizada - consiste em pequenas agulhas metálicas que penetram profundamente no tecido cerebral.

A segunda geração trouxe as chamadas matrizes de microeletrodos, constituídas por dezenas de eletrodos de fio semi-flexível. Embora menos invasivas, essas matrizes são essencialmente chips ultraminiaturizados, e a sua base de silício rígida não lhes permite conformar-se à superfície irregular do cérebro.

Já os novos eletrodos neurais à base de seda podem literalmente "abraçar" o cérebro, adaptando-se às ranhuras e se estendendo por suas superfícies arredondadas, colando-se como se fosse uma fita adesiva.

A flexibilidade também permite que eles se adaptem aos movimentos normais, ou até anormais, do cérebro no interior do crânio.

Seda, metal e plástico

Além de sua flexibilidade, a seda foi escolhida como material base dos eletrodos porque ela é resistente o suficiente para suportar a inserção das finas vias metálicas responsáveis por captar os sinais do cérebro e enviá-los para os equipamentos de processamento.

A seda também permite que os implantes sejam projetados para evitar reações inflamatórias e para dissolver-se em tempos predeterminados, que podem variar de quase imediatamente após o implante até anos mais tarde.

As matrizes de eletrodos de metal - com cerca de 500 micrômetros de espessura - podem ser impressas em camadas de poliimida (um tipo de plástico) e de seda e, a seguir, posicionadas sobre o cérebro.

A parte eletrônica do implante foi obtida com a colaboração da equipe do professor John Rogers, da Universidade de Illinois, que desenvolveu circuitos eletrônicos superflexíveis usados, por exemplo, em uma câmera digital que imita a retina humana.

Epilepsia e lesão na coluna

Em pacientes com epilepsia, as matrizes de eletrodos cerebrais podem ser usadas para detectar quando a crise epiléptica está começando, e enviar de volta ao cérebro pulsos elétricos que anulem os ataques.

Nas pessoas com lesões na coluna vertebral, a tecnologia tem potencial para ler diretamente no cérebro os sinais complexos que comandam os movimentos e encaminhar esses sinais diretamente para os músculos saudáveis ou para próteses, saltando a porção danificada.